Zonglin Lyu

Email | Phone: (646) 445-9529 | Website | Google Scholar

EDUCATION

University of Utah, Salt Lake City, UT (Incoming) Ph.D. in Computer Science

Aug 2024 —

Columbia University, New York, NY

M.S. in Operations Research

Sept 2021 — Dec 2022 3.65 | MS-level 4.09

University of California San Diego, La Jolla, CA

B.S. in Applied Mathematics

Sept 2017 — June 2020 3.81 | Major 3.95

RESEARCH INTERESTS

- Computer Vision
- Multi-modal Learning
- Generative Models

PUBLICATION

- *: equal in contribution
- †: corresponding author
 - 1. Zonglin Lyu, Ming Li, Jianbo Jao, and Chen Chen † . Frame Interpolation with Consecutive Brownian Bridge Diffusion. Under Review. pdf
 - 2. Zonglin Lyu, Mingxuan Lu, Gao Zhu, Yiming Li, and Chen Feng[†]. Can multimodal LLM help place recognition? Under Review.
 - 3. Yiming Li*, Zhiheng Li*, Nuo Chen*, Moonjun Gong*, Zonglin Lyu*, Zehong Wang, Peili Jiang, Chen Feng[†]. Multiagent Multitraversal Multimodal Self-Driving: The MARS Dataset. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2024.
 - 4. Yiming Li*, Zonglin Lyu*, Mingxuan Lu, Chao Chen, Michael Milford, and Chen Feng[†]. "Collaborative Visual Place Recognition." (Submitted to IROS 2024).pdf
 - 5. Xuande Feng*, Zonglin Lyu*,†. "How Features Benefit: Parallel Series Embedding for Multivariate Time Series Forecasting with Transformer." In 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI) (Oral presentation). pdf

RESEARCH EXPERIENCE

Video Frame Interpolation

University of Central Florida, FL Feb 2024 - April 2024

Advisor: Chen Chen

- Conduct a literature review on Video Frame Interpolation and Diffusion Models.
- Design a Diffusion-based Frame Interpolation method that achieves SOTA performance.
- Implemented with PyTorch. Codebase can be found here.

AI4CE Lab
Advisor: Chen Feng

New York University, NY Jan 2023 - present

• Conduct a literature review on Test Time Training, Visual Place Recognition, Point Cloud Prediction, VLMs.

- Formulate the first framework for Collaborative Visual Place Recognition and develop an effective and robust algorithm that balances noise and extra information that collaborators provide. Multi-agent collaboration achieves at most a 50% reduction in error rate than single-agent. The paper was submitted to IROS 2024.
- Collect and benchmark a large-scale outdoor dataset. The paper is accepted to CVPR 2024.
- Study how and when Multimodal LLMs benefit VPR tasks. Design a training-free, data-free, and label-free pipeline to incorporate Multimodal LLMs into VPR.
- Implemented with PyTorch. Codebase can be found here.

Transformer in Multivariate Time Series Prediction

Self-desgined research

Columbia University, NY March 2022 - July 2022

- Conduct literature reviews on time series prediction based on Neural Networks.
- Propose Parallel Series Embedding method applied in transformer-based models to predict time series, achieving notable improvements (at most 50% reduction in RMSE) over the baseline. The paper was accepted to ICTAI 2022.
- Implemented with PyTorch. Codebase can be found here.

PROJECT EXPERIENCE

SE-(3) Equivariant Performer

Advisor: Krzysztof Choromanski

Columbia University, NY Oct 2022 - Dec 2022

- Conduct literature reviews on equivariant neural networks for point clouds.
- Prove that SE3 equivariance is compatible with Performer (linear transformer).
- Design a novel model based on SE(3)-Transformer, making it compatible to performer. The model achieves a 10% performance increase and 2x speedup over the baseline, and the performer variant archives a 5% performance improvement and more than 20% memory efficiency.
- Implemented with PyTorch. Codebase can be found here.

Supervising OCR models with LLMs

Advisor: Peter N. Belhumeur

Columbia University, NY Oct 2022 - Dec 2022

- Conduct literature reviews on Language Models, OCR Models, and Diffusion Models.
- Design a method to supervise an OCR Model with LLMs, which achieves a small improvement over the baseline.
- Implemented with PyTorch. Codebase can be found here and here.

Statistical Inference & Random Optimization

Advisor: Henry Lam

Columbia University, NY Sept 2021 - Oct 2022

- Construct an algorithm to implement cheap bootstrap efficiently with application to Neural Network Model, Queuing system, Computer Network Model, and Integer Programming.
- Construct algorithms to solve the random optimization problem for different methods.
- Implemented with Python, Matlab, and R.

ACADEMIC SERVICES

• Reviewer: IROS2024

SKILLS

- Relevant Coursework: Mathematics of Deep Learning (A+), Practical Deep Learning & System Performance (A+), Machine Learning & High Dimensional Data Mining, Simulation (A+), Python, Reinforcement Learning (audit), Deep Learning for Computer Vision (audit), Machine Learning, Intro to C, Intro to Java, Probability, Statistics, Stochastic Processes, Optimization, Numerical Analysis, Linear Algebra, Mathematical Analysis
- Online Courses: Analysis of Algorithm, Data Structure
- Programming and Software Python (Pytorch, Numpy, Pandas, matplotlib, etc.), Java, C, C++, SQL, R, MAT-LAB, LaTeX.

Awards

• Provost Honor, UCSD: Fall 17, Winter 18, Winter 19, Spring 19, Winter 20, Spring 20